Effects of initial seeding density and fluid perfusion rate on formation of tissue-engineered bone

初始种植密度及液体灌注速率对组织工程骨形成的影响

阅读:4
作者:Warren L Grayson, Sarindr Bhumiratana, Christopher Cannizzaro, P-H Grace Chao, Donald P Lennon, Arnold I Caplan, Gordana Vunjak-Novakovic

Abstract

We describe a novel bioreactor system for tissue engineering of bone that enables cultivation of up to six tissue constructs simultaneously, with direct perfusion and imaging capability. The bioreactor was used to investigate the relative effects of initial seeding density and medium perfusion rate on the growth and osteogenic differentiation patterns of bone marrow-derived human mesenchymal stem cells (hMSCs) cultured on three-dimensional scaffolds. Fully decellularized bovine trabecular bone was used as a scaffold because it provided suitable "biomimetic" topography, biochemical composition, and mechanical properties for osteogenic differentiation of hMSCs. Trabecular bone plugs were completely denuded of cellular material using a serial treatment with hypotonic buffers and detergents, seeded with hMSCs, and cultured for 5 weeks. Increasing seeding density from 30 x 10(6) cells/mL to 60 x 10(6) cells/mL did not measurably influence the characteristics of tissue-engineered bone, in contrast to an increase in the perfusion rate from 100 microms(-1) to 400 microms(-1), which radically improved final cell numbers, cell distributions throughout the constructs, and the amounts of bone proteins and minerals. Taken together, these findings suggest that the rate of medium perfusion during cultivation has a significant effect on the characteristics of engineered bone.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。