Identification of Resistance Pathways Specific to Malignancy Using Organoid Models of Pancreatic Cancer

使用胰腺癌类器官模型鉴定恶性肿瘤特异性的耐药途径

阅读:7
作者:Mariano Ponz-Sarvise #, Vincenzo Corbo #, Hervé Tiriac #, Dannielle D Engle #, Kristopher K Frese #, Tobiloba E Oni, Chang-Il Hwang, Daniel Öhlund, Iok In Christine Chio, Lindsey A Baker, Dea Filippini, Kevin Wright, Tashinga E Bapiro, Pearl Huang, Paul Smith, Kenneth H Yu, Duncan I Jodrell, Youngky

Conclusions

Analyses of normal and tumor pancreatic organoids revealed the importance of ERBB activation during MEK and AKT blockade primarily in the malignant cultures. The lack of ERBB hyperactivation in normal organoids suggests a larger therapeutic index. In our models, pan-ERBB inhibition was synergistic with dual inhibition of MEK and AKT, and the combination of a pan-ERBB inhibitor with MEK antagonists showed the highest activity both in vitro and in vivo.

Purpose

KRAS is mutated in the majority of pancreatic ductal adenocarcinoma. MAPK and PI3K-AKT are primary KRAS effector pathways, but combined MAPK and PI3K inhibition has not been demonstrated to be clinically effective to date. We explore the resistance mechanisms uniquely employed by malignant cells. Experimental design: We evaluated the expression and activation of receptor tyrosine kinases in response to combined MEK and AKT inhibition in KPC mice and pancreatic ductal organoids. In addition, we sought to determine the therapeutic efficacy of targeting resistance pathways induced by MEK and AKT inhibition in order to identify malignant-specific vulnerabilities.

Results

Combined MEK and AKT inhibition modestly extended the survival of KPC mice and increased Egfr and ErbB2 phosphorylation levels. Tumor organoids, but not their normal counterparts, exhibited elevated phosphorylation of ERBB2 and ERBB3 after MEK and AKT blockade. A pan-ERBB inhibitor synergized with MEK and AKT blockade in human PDA organoids, whereas this was not observed for the EGFR inhibitor erlotinib. Combined MEK and ERBB inhibitor treatment of human organoid orthotopic xenografts was sufficient to cause tumor regression in short-term intervention studies. Conclusions: Analyses of normal and tumor pancreatic organoids revealed the importance of ERBB activation during MEK and AKT blockade primarily in the malignant cultures. The lack of ERBB hyperactivation in normal organoids suggests a larger therapeutic index. In our models, pan-ERBB inhibition was synergistic with dual inhibition of MEK and AKT, and the combination of a pan-ERBB inhibitor with MEK antagonists showed the highest activity both in vitro and in vivo.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。