Mitochondrial Alterations (Inhibition of Mitochondrial Protein Expression, Oxidative Metabolism, and Ultrastructure) Induced by Linezolid and Tedizolid at Clinically Relevant Concentrations in Cultured Human HL-60 Promyelocytes and THP-1 Monocytes

临床相关浓度的利奈唑胺和替地唑胺对培养的人类HL-60早幼粒细胞和THP-1单核细胞线粒体的影响(抑制线粒体蛋白表达、氧化代谢和超微结构)

阅读:2
作者:Tamara V Milosevic ,Valéry L Payen ,Pierre Sonveaux ,Giulio G Muccioli ,Paul M Tulkens ,Françoise Van Bambeke

Abstract

Linezolid, the first clinically available oxazolidinone antibiotic, causes potentially severe toxicities (myelosuppression, lactic acidosis, and neuropathies) ascribed to impairment of mitochondrial protein synthesis and consecutive mitochondrial dysfunction. Tedizolid, a newly approved oxazolidinone, shows an enhanced activity compared to linezolid but is also a more potent inhibitor of mitochondrial protein synthesis. We compared linezolid and tedizolid for (i) inhibition of the expression of subunit I of cytochrome c-oxidase (CYTox I; Western blot analysis), (ii) cytochrome c-oxidase activity (biochemical assay), (iii) mitochondrial oxidative metabolism (Seahorse technology), and (iv) alteration of mitochondrial ultrastructure (electron microscopy) using HL-60 promyelocytes and THP-1 monocytes exposed to microbiologically (multiples of modal MIC against Staphylococcus aureus) and therapeutically (Cmin - Cmax) pertinent concentrations. Both drugs caused a rapid and complete (48 to 72 h) inhibition of CYTox I expression, cytochrome c-oxidase activity, and spare respiratory capacity, with conspicuous swelling of the mitochondrial matrix and loss of their cristae. Globally, tedizolid was a more potent inhibitor than linezolid. For both drugs, all effects were quickly (48 to 72 h) and fully reversible upon drug withdrawal. Using an alternation of exposure to and withdrawal from drug mimicking their approved schedule of administration (twice daily and once daily [qD] for linezolid and tedizolid, respectively), only partial inhibition of CYTox I expression was noted for up to 96 h. Thus, rapid reversal of toxic effects upon discontinuous administration may mitigate oxazolidinone toxicity. Since tedizolid is given qD, this may help to explain its reported lower preclinical and clinical toxicity. Keywords: electron transport chain; linezolid; mitochondria; mitochondrial metabolism; mitochondrial proteins; mitochondrial respiration; oxazolidinones; tedizolid.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。