Probing molecule-like isolated octahedra via-phase stabilization of zero-dimensional cesium lead halide nanocrystals

通过零维铯铅卤化物纳米晶体的相稳定化探测类分子孤立八面体

阅读:5
作者:Paulraj Arunkumar, Han Bin Cho, Kyeong Hun Gil, Sanjith Unithrattil, Yoon Hwa Kim, Won Bin Im

Abstract

Zero-dimensional (0D) inorganic perovskites have recently emerged as an interesting class of material owing to their intrinsic Pb2+ emission, polaron formation, and large exciton binding energy. They have a unique quantum-confined structure, originating from the complete isolation of octahedra exhibiting single-molecule behavior. Herein, we probe the optical behavior of single-molecule-like isolated octahedra in 0D Cesium lead halide (Cs4PbX6, X = Cl, Br/Cl, Br) nanocrystals through isovalent manganese doping at lead sites. The incorporation of manganese induced phase stabilization of 0D Cs4PbX6 over CsPbX3 by lowering the symmetry of PbX6 via enhanced octahedral distortion. This approach enables the synthesis of CsPbX3 free Cs4PbX6 nanocrystals. A high photoluminescence quantum yield for manganese emission was obtained in colloidal (29%) and solid (21%, powder) forms. These performances can be attributed to structure-induced confinement effects, which enhance the energy transfer from localized host exciton states to Mn2+ dopant within the isolated octahedra.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。