A Complement-Optimized EGFR Antibody Improves Cytotoxic Functions of Polymorphonuclear Cells against Tumor Cells

补体优化的EGFR抗体增强多形核细胞对肿瘤细胞的细胞毒功能

阅读:5
作者:Stefanie Derer, Michael Cossham, Thies Rösner, Christian Kellner, Frank J Beurskens, Ralf Schwanbeck, Stefan Lohse, Christian Sina, Matthias Peipp, Thomas Valerius

Abstract

Complement-dependent cytotoxicity (CDC) has been suggested to be an important mechanism of action of tumor-targeting Abs. However, single unmodified epidermal growth factor receptor (EGFR)-targeting IgG1 Abs fail to trigger efficient CDC. For the current study, we generated a CDC-optimized variant of the EGFR Ab matuzumab (H425 wt) by introducing amino acid substitutions K326A/E333A (H425 mt). This Ab was then used to elucidate the impact of complement activation on the capacity of effector cells such as mononuclear cells (MNC) and polymorphonuclear cells (PMN) to exert Ab-dependent cell-mediated cytotoxicity (ADCC). H425 mt, but not H425 wt, significantly induced complement deposition, release of anaphylatoxins, and CDC against distinct tumor cell lines, whereas no differences in ADCC by MNC or PMN were detected. Notably, stronger cytotoxicity was induced by H425 mt than by H425 wt in whole blood assays and in experiments in which MNC or PMN were combined with serum. Although MNC-ADCC was not affected by C5 cleavage, the cytotoxic activity of PMN in the presence of serum strongly depended on C5 cleavage, pointing to a direct interaction between complement and PMN. Strong cell surface expression of C5a receptors was detected on PMN, whereas NK cells completely lacked expression. Stimulation of PMN with C5a led to upregulation of activated complement receptor 3, resulting in enhanced complement receptor 3-dependent PMN-ADCC against tumor cells. In conclusion, complement-optimized EGFR Abs may constitute a promising strategy to improve tumor cell killing by enhancing the interaction between humoral and cellular effector functions in Ab-based tumor therapy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。