Machine learning predictions of T cell antigen specificity from intracellular calcium dynamics

基于细胞内钙动力学的机器学习预测T细胞抗原特异性

阅读:1
作者:Sébastien This ,Santiago Costantino ,Heather J Melichar

Abstract

Adoptive T cell therapies rely on the production of T cells with an antigen receptor that directs their specificity toward tumor-specific antigens. Methods for identifying relevant T cell receptor (TCR) sequences, predominantly achieved through the enrichment of antigen-specific T cells, represent a major bottleneck in the production of TCR-engineered cell therapies. Fluctuation of intracellular calcium is a proximal readout of TCR signaling and candidate marker for antigen-specific T cell identification that does not require T cell expansion; however, calcium fluctuations downstream of TCR engagement are highly variable. We propose that machine learning algorithms may allow for T cell classification from complex datasets such as polyclonal T cell signaling events. Using deep learning tools, we demonstrate accurate prediction of TCR-transgenic CD8+ T cell activation based on calcium fluctuations and test the algorithm against T cells bearing a distinct TCR as well as polyclonal T cells. This provides the foundation for an antigen-specific TCR sequence identification pipeline for adoptive T cell therapies.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。