Korean Ginseng Berry Extract Enhances the Male Steroidogenesis Enzymes In Vitro and In Vivo

高丽人参浆果提取物可增强体内和体外雄性类固醇生成酶

阅读:10
作者:Hyun Joo Chung, Sang Jun Lee, Ara Jang, Chae Eun Lee, Da Won Lee, Soon Chul Myung, Jin Wook Kim

Conclusions

GBE increased mRNA and protein levels of steroidogenesis-related enzymes STAR, CYP11A1, and CYP17A1. These key enzymes induced the increased production of testosterone both in vivo and in vitro. Thus, GBE might be a promising therapeutic or additive nutritional agent for improving men's health by increasing steroidogenesis or improving LOH.

Methods

In vitro model, mouse Leydig cells were treated with varying concentrations of GBE, and the levels of steroidogenesis-related genes and proteins and testosterone were measured using western blotting, qRT-PCR, and enzyme-linked immunosorbent assay (ELISA). Similarly, in an in vivo model using lipopolysaccharide-injected C57BL/6J mice, expression of steroidogenesis-related genes and proteins and testosterone levels were analyzed. Additionally, sleep deprivation was used to simulate common life stressors related to late-onset hypogonadism (LOH) and the natural effects of aging. Mice were fed sham or GBE before being subjected to paradoxical sleep deprivation.

Purpose

Testosterone hormonal replacement is the most commonly prescribed solution for men with reproductive issues; however, this treatment has various drawbacks. Hence, the identification of a natural product that promotes steroidogenesis is urgently needed. Ginseng is a popular traditional medicine. This study aimed to investigate steroidogenic effects of Korean ginseng berry extract (GBE; Panax ginseng C.A. Meyer) in vitro and in vivo. Materials and

Results

In vitro, GBE induced steroidogenic effects by increasing the levels of enzymes associated with steroidogenesis, steroidogenic acute regulatory protein (STAR), CYP11A1, and CYP17A1. In vivo, GBE significantly increased mRNA and protein levels of steroidogenic enzymes. Furthermore, the synthetic testosterone levels in mouse Leydig cell supernatants and blood sera were increased. In the sleep deprivation study, mice fed GBE showed increased testosterone production and survival under such stressful conditions. Conclusions: GBE increased mRNA and protein levels of steroidogenesis-related enzymes STAR, CYP11A1, and CYP17A1. These key enzymes induced the increased production of testosterone both in vivo and in vitro. Thus, GBE might be a promising therapeutic or additive nutritional agent for improving men's health by increasing steroidogenesis or improving LOH.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。