Bioactive fluorescent hybrid microparticles as a stand-alone osteogenic differentiation inducer

生物活性荧光混合微粒作为独立的成骨分化诱导剂

阅读:5
作者:Neda Aslankoohi, Shigang Lin, Kibret Mequanint

Abstract

Osteogenic differentiation of stem cells is one of the essential steps in bone regeneration. While supplementing exogenous factors using differentiation media is the established method to differentiate stem cells into osteoblasts on biomaterials, designing biomaterials that can act as a stand-alone differentiation inducer and promote bone regeneration is preferred for clinical translation. In this work, we report dexamethasone-loaded organic-inorganic hybrid microparticles synthesized from an intrinsically fluorescent poly (ester amide) and tertiary bioactive glass (PEA-BG) as a stand-alone osteogenic differentiation inducer. The mechanical properties data indicated that the compressive modulus of fluorescent hybrid microparticles could be modulated by its composition. The hybrid fluorescent microparticles supported the adhesion and proliferation of 10T1/2 ​cells in culture for up to seven days. Both pristine and dexamethasone-loaded PEA-BG microparticles were able to induce osteogenic differentiation of 10T1/2 ​cells in the absence of any media supplement, to a level even higher than standard osteogenic media, as evidenced by the expression of osteogenic markers on gene and protein levels and matrix mineralization. Taken together, the fluorescent PEA-BG hybrid microparticles have the potential to be used as a stand-alone biomaterial for osteogenic differentiation and bone regeneration.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。