Inactivation of ZSCAN18 by promoter hypermethylation drives the proliferation via attenuating TP53INP2-mediated autophagy in gastric cancer cells

启动子高甲基化导致 ZSCAN18 失活,从而通过减弱 TP53INP2 介导的自噬来促进胃癌细胞增殖

阅读:5
作者:Bin Li #, Baoqing Ren #, Gang Ma, Fenglin Cai, Pengliang Wang, Yi Zeng, Yong Liu, Li Zhang, Yang Yang, Han Liang, Rupeng Zhang, Jingyu Deng

Background

Zinc finger and scan domain containing 18 (ZSCAN18) belongs to the zinc finger transcription factor superfamily, which consists of hundreds of members that play critical roles in all steps of tumorigenesis.

Conclusions

Collectively, this study unveiled that ZSCAN18 played an anticancer role in GC by promoting autophagy and transcriptional regulation of TP53INP2 and provided a promising target for the diagnosis and treatment of GC.

Methods

This study aims to investigate the roles of ZSCAN18 in gastric cancer (GC). The expression level in GC and the clinicopathologic features of ZSCAN18 were detected by immunohistochemistry staining. Methylation of ZSCAN18 promoter in GC tissues and cell lines was analyzed via MassARRAY; the same method was used to detect GC cell lines demethylated by 5-aza-2'-deoxycytidine treatment. The biological function of ZSCAN18 in GC cells was verified by in vitro and in vivo experiments. The downstream molecular mechanism of ZSCAN18 was explored using RNA next-generation sequencing, immunofluorescence and chromatin immunoprecipitation.

Results

Our work revealed ZSCAN18 expression was markedly reduced in GC tissues compared with adjacent normal tissues as a result of hypermethylation in GC. Likewise, ZSCAN18 expression was significantly reduced in a panel of GC cell lines as a result of the densely methylated ZSCAN18 promoter. Functionally, ZSCAN18 overexpression inhibited the biological progression of GC cells, which was characterized by weaken proliferation, enhanced autophagy and suppressed tumor growth. ZSCAN18 acted as a transcription factor and played an important role in binding to the promoter of tumor protein 53-induced nuclear protein 2 (TP53INP2), and we also confirmed the anti-tumor effect of TP53INP2 in GC. Furthermore, the knockdown of TP53INP2 alleviated the inhibiting effects of ZSCAN18 in GC cells by in vitro and in vivo experiments. Conclusions: Collectively, this study unveiled that ZSCAN18 played an anticancer role in GC by promoting autophagy and transcriptional regulation of TP53INP2 and provided a promising target for the diagnosis and treatment of GC.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。