MSC-EXO and tempol ameliorate bronchopulmonary dysplasia in newborn rats by activating HIF-1α

MSC-EXO 和 tempol 通过激活 HIF-1α 改善新生大鼠支气管肺发育不良

阅读:5
作者:Juanmei Wang, Aimin Zhang, Furong Huang, Jun Xu, Menghua Zhao

Background

Bronchopulmonary dysplasia (BPD) is a major complication of premature infants and an important cause of morbidity and mortality. This study investigates the effect of the combination of mesenchymal stem cells-derived exosomes (MSC-EXO) and tempol on BPD and analyzes its mechanism.

Conclusions

Combined treatment could improve lung tissue injury, promote pulmonary vascular remodeling, restore lung function, and inhibit oxidative stress in BPD rats. These effects were achieved through activation of HIF-1α.

Methods

MSC-EXO was extracted by centrifugation and identified by transmission electron microscopy (TEM), nanoparticle tracking analysis, and western blot analysis (WB). Tidal volume (TV), minute ventilation (MV), peak inspiratory flow (PIF), and dynamic pulmonary compliance (Cdyn) of rats were measured by BuxCo pulmonary function experimental platform. Hematoxylin-eosin staining was performed to observe the lung morphology and radical alveolar count (RAC) and mean linear intercept (MLI) were assessed. Immunofluorescence (IF) was conducted to detect the expression of CD31 and α-SMA in pulmonary blood vessels. The kits were used to calculate malondialdehyde (MDA), superoxide dismutase (SOD), and total antioxidant capacity (TAOC) concentration in lung tissue. Enzyme linked immunosorbent assay was applied to detect the levels of IL-1β, IL-17, IL-6, and IFN-γ in bronchoalveolar lavage fluid. In addition, the expressions of HIF-1α, vascular endothelial growth factor (VEGF), p-PI3K, and p-AKT were analyzed by WB and IF.

Results

We successfully extracted and identified MSC-EXO. In BPD rats, TV, MV, PIF, and Cdyn decreased, alveoli were simplified, and the number of interalveoli small vessels, blood vessel density decreased. Moreover, RAC, CD31, TAOC, and SOD decreased, and MLI, α-SMA, MDA, IL-1β, IL-17, IL-6, and IFN-γ increased, which was reversed by the combination of MSC-EXO and tempol treatment after combined treatment. In addition, the expression levels of HIF-1α, VEGF, p-PI3K, and p-AKT were increased after combined treatment. Conclusions: Combined treatment could improve lung tissue injury, promote pulmonary vascular remodeling, restore lung function, and inhibit oxidative stress in BPD rats. These effects were achieved through activation of HIF-1α.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。