Circulating proteomic panels for risk stratification of intracranial aneurysm and its rupture

循环蛋白质组学用于颅内动脉瘤及其破裂的风险分层

阅读:5
作者:Yueting Xiong #, Yongtao Zheng #, Yan Yan #, Jun Yao, Hebin Liu, Fenglin Shen, Siyuan Kong, Shuang Yang, Guoquan Yan, Huanhuan Zhao, Xinwen Zhou, Jia Hu, Bin Zhou, Tao Jin, Huali Shen, Bing Leng, Pengyuan Yang, Xiaohui Liu

Abstract

The prevalence of intracranial aneurysm (IA) is increasing, and the consequences of its rupture are severe. This study aimed to reveal specific, sensitive, and non-invasive biomarkers for diagnosis and classification of ruptured and unruptured IA, to benefit the development of novel treatment strategies and therapeutics altering the course of the disease. We first assembled an extensive candidate biomarker bank of IA, comprising up to 717 proteins, based on altered proteins discovered in the current tissue and serum proteomic analysis, as well as from previous studies. Mass spectrometry assays for hundreds of biomarkers were efficiently designed using our proposed deep learning-based method, termed DeepPRM. A total of 113 potential markers were further quantitated in serum cohort I (n = 212) & II (n = 32). Combined with a machine-learning-based pipeline, we built two sets of biomarker combinations (P6 & P8) to accurately distinguish IA from healthy controls (accuracy: 87.50%) or classify IA rupture patients (accuracy: 91.67%) upon evaluation in the external validation set (n = 32). This extensive circulating biomarker development study provides valuable knowledge about IA biomarkers.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。