Tumor-Acidity and Bioorthogonal Chemistry-Mediated On-Site Size Transformation Clustered Nanosystem to Overcome Hypoxic Resistance and Enhance Chemoimmunotherapy

肿瘤酸性和生物正交化学介导的现场尺寸转化聚集纳米系统以克服缺氧抗性并增强化学免疫疗法

阅读:8
作者:Kewei Wang, Maolin Jiang, Jielian Zhou, Ye Liu, Qingyu Zong, Youyong Yuan

Abstract

Hypoxia, a common feature of most solid tumors, causes severe tumor resistance to chemotherapy and immunotherapy. Herein, a tumor-acidity and bioorthogonal chemistry-mediated on-site size transformation clustered nanosystem is designed to overcome hypoxic resistance and enhance chemoimmunotherapy. The nanosystem utilized the tumor-acidity responsive group poly(2-azepane ethyl methacrylate) with a rapid response rate and highly efficient bioorthogonal click chemistry to form large-sized aggregates in tumor tissue to enhance accumulation and retention. Subsequently, another tumor-acidity responsive group of the maleic acid amide with a slow response rate was cleaved allowing the aggregates to slowly dissociate into ultrasmall nanoparticles with better tumor penetration ability for the delivery of doxorubicin (DOX) and nitric oxide (NO) to a hypoxic tumor tissue. NO can reverse a hypoxia-induced DOX resistance and boost the antitumor immune response through a reprogrammed tumor immune microenvironment. This tumor-acidity and bioorthogonal chemistry-mediated on-site size transformation clustered nanosystem not only helps to counteract a hypoxia-induced chemoresistance and enhance antitumor immune responses but also provides a general drug delivery strategy for enhanced tumor accumulation and penetration.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。