Pioglitazone, a peroxisome proliferator‑activated receptor γ agonist, induces cell death and inhibits the proliferation of hypoxic HepG2 cells by promoting excessive production of reactive oxygen species

吡格列酮是一种过氧化物酶体增殖激活受体 γ 激动剂,它通过促进活性氧的过量产生来诱导细胞死亡并抑制缺氧 HepG2 细胞的增殖

阅读:7
作者:Guohao Huang, Mengfan Zhang, Manzhou Wang, Wenze Xu, Xuhua Duan, Xinwei Han, Jianzhuang Ren

Abstract

Hypoxia is a hallmark of solid tumors. Hypoxic cancer cells adjust their metabolic characteristics to regulate the production of cellular reactive oxygen species (ROS) and facilitate ROS-mediated metastasis. Peroxisome proliferator-activated receptor γ (PPARγ) is a nuclear receptor that regulates the transcription of fatty acid metabolism-related genes that have a key role in the survival and proliferation function of hypoxic cancer cells. In the present study, mRNA expression in HepG2 cells under chemically induced hypoxia was assessed. The protein expression levels of hypoxia-inducible factor 1α (HIF-1α) were measured using western blotting. Following treatment with the PPARγ agonist pioglitazone, cell viability was assessed using a Cell Counting Kit-8 assay, whilst cell proliferation and death were determined using 5-ethynyl-2'-deoxyuridine incorporation staining, and calcein-acetoxymethyl ester and propidium iodide staining, respectively. Cellular ROS production was assessed using dihydroethidium staining. Cobalt chloride was used to induce hypoxia in HepG2 cells, which was evaluated using HIF-1α expression. The results revealed that the mRNA expression of PPARγ, CD36, acetyl-co-enzyme A dehydrogenase (ACAD) medium chain (ACADM) and ACAD short-chain (ACADS) was downregulated in hypoxic HepG2 cells. The PPARγ agonist pioglitazone decreased the cell viability of hypoxic HepG2 cells by inhibiting cell proliferation and inducing cell death. Following treatment with the PPARγ agonist pioglitazone, hypoxic HepG2 cells produced excessive ROS. ROS-mediated cell death induced by the PPARγ agonist pioglitazone was rescued with the antioxidant N-acetyl-L-cysteine. The downregulated mRNA expression of PPARγ, CD36, ACADM and ACADS was not reverted by a PPARγ agonist in hypoxic HepG2 cells. By contrast, the PPARγ agonist suppressed the mRNA expression of BCL2, which was upregulated in hypoxic HepG2 cells. In summary, the PPARγ agonist stimulated excessive ROS production to inhibit cell proliferation and increase the death of hypoxic HepG2 cells by decreasing BCL2 mRNA expression, suggesting a negative association between PPARγ and BCL2 in the regulation of ROS production in hypoxic HepG2 cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。