MicroRNA-1225-5p Promotes the Development of Fibrotic Cataracts via Keap1/Nrf2 Signaling

MicroRNA-1225-5p 通过 Keap1/Nrf2 信号促进纤维化白内障的发展

阅读:15
作者:Peihong Wang, Lixiong Gao, Tianju Ma, Zi Ye, Zhaohui Li

Conclusions

These results suggest that blockade of miR-1225-5p prevents lens fibrosis via targeting Keap1 thereby inhibiting Nrf2 activation. The 'miR-1225-Keap1-Nrf2' signaling axis presumably holds therapeutic promise in the treatment of fibrotic cataracts.

Methods

Gain- and loss-of-function approaches, as well as multiple fibrosis models of the lens, were applied to validate the crucial role of two miR-1225 family members in the TGF-β2 induced PCO model of human LECs and injury-induced ASC model in mice.

Purpose

Fibrotic cataracts, including anterior subcapsular cataract (ASC) as well as posterior capsule opacification (PCO), are a common vision-threatening cause worldwide. Still, little is known about the underlying mechanisms. Here, we demonstrate a miRNA-based pathway regulating the pathological fibrosis process of lens epithelium.

Results

Both miR-1225-3p and miR-1225-5p prominently stimulate the migration and EMT process of lens epithelial cells (LECs) in vitro as well as lens fibrosis in vivo. Moreover, we demonstrated that the underlying mechanism for these effects of miR-1225-5p is via directly targeting Keap1 to regulate Keap1/Nrf2 signaling. In addition, evidence showed that Keap1/Nrf2 signaling is activated in the TGF-β2 induced PCO model of human LECs and injury-induced ASC model in mice, and inhibition of the Nrf2 pathway can significantly reverse the process of LECs EMT as well as lens fibrosis. Conclusions: These results suggest that blockade of miR-1225-5p prevents lens fibrosis via targeting Keap1 thereby inhibiting Nrf2 activation. The 'miR-1225-Keap1-Nrf2' signaling axis presumably holds therapeutic promise in the treatment of fibrotic cataracts.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。