ER71 specifies Flk-1+ hemangiogenic mesoderm by inhibiting cardiac mesoderm and Wnt signaling

ER71 通过抑制心脏中胚层和 Wnt 信号传导来指定 Flk-1+ 血管生成中胚层

阅读:6
作者:Fang Liu, Inyoung Kang, Changwon Park, Li-Wei Chang, Wei Wang, Dongjun Lee, Dae-Sik Lim, Daniel Vittet, Jeanne M Nerbonne, Kyunghee Choi

Abstract

Two distinct types of Flk-1(+) mesoderm, hemangiogenic and cardiogenic, are thought to contribute to blood, vessel, and cardiac cell lineages. However, our understanding of how Flk-1(+) mesoderm is specified is currently limited. In the present study, we investigated whether ER71, an Ets transcription factor essential for hematopoietic and endothelial cell lineage development, could modulate the hemangiogenic or cardiogenic outcome of the Flk-1(+) mesoderm. We show that Flk-1(+) mesoderm can be divided into Flk-1(+)PDGFRα(-) hemangiogenic and Flk-1(+)PDGFRα(+) cardiogenic mesoderm. ER71-deficient embryonic stem cells produced only the Flk-1(+)PDGFRα(+) cardiogenic mesoderm, which generated SMCs and cardiomyocytes. Enforced ER71 expression in the wild-type embryonic stem cells skewed toward the Flk-1(+)PDGFRα(-) mesoderm formation, which generated hematopoietic and endothelial cells. Whereas hematopoietic and endothelial cell genes were positively regulated by ER71, cardiac and Wnt signaling pathway genes were negatively regulated by ER71. We show that ER71 could inhibit Wnt signaling in VE-cadherin-independent as well as VE-cadherin-dependent VE-cadherin/β-catenin/Flk-1 complex formation. Enforced β-catenin could rescue cardiogenic mesoderm in the context of ER71 overexpression. In contrast, ER71-deficient Flk-1(+) mesoderm displayed enhanced Wnt signaling, which was reduced by ER71 re-introduction. We provide the molecular basis for the antagonistic relationship between hemangiogenic and cardiogenic mesoderm specification by ER71 and Wnt signaling.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。