The unresolved problem of beta-2 microglobulin amyloid deposits in the intervertebral discs of long-term dialysis patients

长期透析患者椎间盘中β-2微球蛋白淀粉样蛋白沉积的未解决问题

阅读:6
作者:Tsung-Ting Tsai, Arun-Kumar Kaliya-Perumal, Chang-Chyi Jenq, Chi-Chien Niu, Natalie Yi-Ju Ho, Tung-Ying Lee, Po-Liang Lai

Background

Dialysis-related destructive spondyloarthropathy caused by beta-2 microglobulin (β2M) amyloid deposits in intervertebral discs is a major burden for patients undergoing long-term dialysis. This study aimed to quantify the presence of β2M amyloid deposits in the intervertebral disc tissue of such patients and analyze whether there was a significant correlation between β2M accumulation and the duration of dialysis.

Conclusions

The problem of β2M amyloidosis in long-term dialysis patients remains unresolved even with predominant use of high-flux dialysis membranes. This highlights the insufficiency of current dialysis modalities to effectively filter β2M.

Methods

Two groups of patients who had undergone surgery for degenerative spinal pathologies were selected: the dialysis group (n = 29) with long-term dialysis and the control group (n = 10) with no renal impairment. Tissue sections were prepared from specimens of intervertebral disc tissue obtained during spinal surgery and analyzed via histological staining, including immunohistochemistry (IHC) and Congo red.

Results

There was a statistically significant multifold increase of β2M expression in the disc tissue of long-term dialysis patients when compared to non-dialysis patients, as shown by both IHC (0.019 ± 0.023 μm2 vs. 0.00020 ± 0.00033 μm2, respectively; p = 0.012) and Congo red staining (0.027 ± 0.041 μm2 vs. 9.240 × 10-5 ± 5.261 × 10-5 μm2, respectively; p = 0.047). We also note a moderate strength positive correlation between the duration of dialysis and positive IHC (r = 0.39; p = 0.015) and Congo-red staining (r = 0.42; p = 0.007). Conclusions: The problem of β2M amyloidosis in long-term dialysis patients remains unresolved even with predominant use of high-flux dialysis membranes. This highlights the insufficiency of current dialysis modalities to effectively filter β2M.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。