Conclusion
Increased expression of six lEV-miRNAs reflects the pathophysiology of AF that may provide fundamental knowledge to develop the novel biomarkers for diagnosis or monitoring the patients with the high risk of AF.
Methods
lEVs were isolated by differential centrifugation and characterized by Nanoparticle Tracking Analysis (NTA), Transmission Electron Microscopy (TEM), flow cytometry and Western blot analysis. For the discovery phase, 12 AF patients and 12 non-AF controls were enrolled to determine lEV-miRNA profile using quantitative reverse transcription polymerase chain reaction array. The candidate miRNAs were confirmed their expression in a validation cohort using droplet digital PCR (30 AF, 30 controls). Bioinformatics analysis was used to predict their target genes and functional pathways.
Results
TEM, NTA and flow cytometry demonstrated that lEVs presented as cup shape vesicles with a size ranging from 100 to 1000 nm. AF patients had significantly higher levels of lEVs at the size of 101-200 nm than non-AF controls. Western blot analysis was used to confirm EV markers and showed the high level of cardiomyocyte expression (Caveolin-3) in lEVs from AF patients. Nineteen miRNAs were significantly higher (> twofold, p < 0.05) in AF patients compared to non-AF controls. Six highly expressed miRNAs (miR-106b-3p, miR-590-5p, miR-339-3p, miR-378-3p, miR-328-3p, and miR-532-3p) were selected to confirm their expression. Logistic regression analysis showed that increases in the levels of these 6 highly expressed miRNAs associated with AF. The possible functional roles of these lEV-miRNAs may involve in arrhythmogenesis, cell apoptosis, cell proliferation, oxygen hemostasis, and structural remodeling in AF.
