Dual mTORC1/2 Inhibition Synergistically Enhances AML Cell Death in Combination with the BCL2 Antagonist Venetoclax

双重 mTORC1/2 抑制与 BCL2 拮抗剂 Venetoclax 联合使用可协同增强 AML 细胞死亡

阅读:5
作者:Toshihisa Satta #, Lin Li #, Sri Lakshmi Chalasani #, Xiaoyan Hu #, Jewel Nkwocha, Kanika Sharma, Maciej Kmieciak, Mohamed Rahmani, Liang Zhou, Steven Grant

Conclusions

The venetoclax/INK128 regimen exerts significant antileukemic activity in various preclinical models through mechanisms involving MCL-1 downregulation and BAK/BAX activation, and offers potential advantages over PI3K or AKT inhibitors in cells with constitutive AKT activation. This regimen is active against primary and venetoclax-resistant AML cells, and in in vivo AML models. Further investigation of this strategy appears warranted.

Purpose

Acute myelogenous leukemia (AML) is an aggressive disease with a poor outcome. We investigated mechanisms by which the anti-AML activity of ABT-199 (venetoclax) could be potentiated by dual mTORC1/TORC2 inhibition. Experimental design: Venetoclax/INK128 synergism was assessed in various AML cell lines and primary patient AML samples in vitro. AML cells overexpressing MCL-1, constitutively active AKT, BAK, and/or BAX knockout, and acquired venetoclax resistance were investigated to define mechanisms underlying interactions. The antileukemic efficacy of this regimen was also examined in xenograft and patient-derived xenograft (PDX) models.

Results

Combination treatment with venetoclax and INK128 (but not the mTORC1 inhibitor rapamycin) dramatically enhanced cell death in AML cell lines. Synergism was associated with p-AKT and p-4EBP1 downregulation and dependent upon MCL-1 downregulation and BAK/BAX upregulation as MCL-1 overexpression and BAX/BAK knockout abrogated cell death. Constitutive AKT activation opposed synergism between venetoclax and PI3K or AKT inhibitors, but not INK128. Combination treatment also synergistically induced cell death in venetoclax-resistant AML cells. Similar events occurred in primary patient-derived leukemia samples but not normal CD34+ cells. Finally, venetoclax and INK128 co-treatment displayed increased antileukemia effects in in vivo xenograft and PDX models. Conclusions: The venetoclax/INK128 regimen exerts significant antileukemic activity in various preclinical models through mechanisms involving MCL-1 downregulation and BAK/BAX activation, and offers potential advantages over PI3K or AKT inhibitors in cells with constitutive AKT activation. This regimen is active against primary and venetoclax-resistant AML cells, and in in vivo AML models. Further investigation of this strategy appears warranted.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。