(-)-Epigallocatechin-3-gallate inhibits RANKL-induced osteoclastogenesis via downregulation of NFATc1 and suppression of HO-1-HMGB1-RAGE pathway

(-)-表没食子儿茶素没食子酸酯通过下调 NFATc1 和抑制 HO-1-HMGB1-RAGE 通路抑制 RANKL 诱导的破骨细胞生成

阅读:7
作者:Tsuyoshi Nishioku, Toshiki Kubo, Tsukushi Kamada, Kuniaki Okamoto, Takayuki Tsukuba, Takuhiro Uto, Yukihiro Shoyama

Abstract

Osteoporosis disturbs the balance of bone metabolism, and excessive bone resorption causes a decrease in bone density, thus increasing the risk of fracture. (-)-Epigallocatechin-3-gallate (EGCG) is the most abundant catechin contained in green tea. EGCG has a variety of pharmacological activities. Recently, it was reported that EGCG inhibits osteoclast differentiation, but the details of the mechanism underlying the EGCG-mediated suppression of osteoclastogenesis are unknown. In this study, we investigated the effects of EGCG on several signaling pathways in osteoclastogenesis. EGCG suppressed the expression of the nuclear factor of activated T cells cytoplasmic-1 (NFATc1), the master regulator of osteoclastogenesis. EGCG decreased the expression of cathepsin K, c-Src, and ATP6V0d2 and suppressed bone resorption. We also found that EGCG upregulated heme oxygenase-1 (HO-1) and suppressed the extracellular release of high-mobility group box 1 (HMGB1). In addition, EGCG decreased the expression of the receptor for advanced glycation end products (RAGE), which is the receptor of HMGB1, in osteoclastogenesis. In summary, our study showed that EGCG could inhibit osteoclast differentiation through the downregulation of NFATc1 and the suppression of the HO-1-HMGB1-RAGE pathway. EGCG might have the potential to be a lead compound that suppresses bone resorption in the treatment of osteoporosis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。