Identification of the new gene Zrsr1 to associate with the pluripotency state in induced pluripotent stem cells (iPSCs) using high throughput sequencing technology

利用高通量测序技术鉴定与诱导性多能干细胞 (iPSC) 中的多能性状态相关的新基因 Zrsr1

阅读:7
作者:Shuai Gao, Gang Chang, Jianhui Tian, Shaorong Gao, Tao Cai

Abstract

Finding the markers to predict the quality of induced pluripotent stem cells (iPSCs) will accelerate its practical application. The fully pluripotent iPSCs has been determined as viable all-iPSC mice can be generated through tetraploid (4N) complementation. The activation of the imprinted Dlk1-Dio3 gene cluster was reported to correlate with the pluripotency of iPSCs. However, recent studies demonstrated that the loss of imprinting at the Dlk1-Dio3 locus does not strictly correlate with the reduced pluripotency of iPSCs. In our study (ref [1]), iPSC lines with the same genetic background and proviral integration sites were established, and the pluripotency state of each iPSC line was well characterized using tetraploid (4N) complementation assay. The gene expression and global epigenetic modifications of "4N-ON" and the corresponding "4N-OFF" iPSC lines were compared through deep sequencing analysis of mRNA expression, small RNA profiling, histone modifications (H3K4me3, H3K27me3 and H3K4me2) and DNA methylation. Very few differences were detected in the iPSC lines that were investigated. However, an imprinted gene, Zrsr1 was disrupted in the "4N-OFF" iPSC lines. Here we provide more detail about the dataset and the R script with additional data for others to repeat the finding.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。