Glycochenodeoxycholate induces cell survival and chemoresistance via phosphorylation of STAT3 at Ser727 site in HCC

甘氨酰鹅脱氧胆酸通过磷酸化 STAT3 在肝细胞癌中的 Ser727 位点来诱导细胞存活和化学抗性

阅读:5
作者:Jue Wang, Maojun Zhou, Xin Jin, Bingxin Li, Chengzhi Wang, Qi Zhang, Mingmei Liao, Xuan Hu, Manyi Yang

Abstract

Glycochenodeoxycholate (GCDA) is closely associated with carcinogenesis and chemoresistance of hepatocellular carcinoma (HCC). Signal transducer and activator of transcription 3 (STAT3), a transcription factor, is involved in various human tumors. Whether GCDA induces chemoresistance through STAT3 and the mechanism of action remains elusive. In this study, we firstly found that the expression level of STAT3 has a positive correlation with chemoresistance of HCC cells. Moreover, GCDA can upregulate the expression of STAT3 protein. Hence, we suspect that GCDA may induce chemoresistance of HCC cells via STAT3. Mechanistically, GCDA stimulates phosphorylation of STAT3 at Ser727 site and mediates pSer727-STAT3 protein to translocate and aggregate in the nucleus, which is important for cell survival. When Ser727 of STAT3 mutated to Asp, the capacity of STAT3 to accumulate in the nucleus was attenuated, STAT3-induced cell survival was impaired and GCDA-induced chemoresistance was abolished. In addition, while activation of extracellular signal-regulated kinase 1/2 (ERK1/2) was inhibited by PD98059, phosphorylation of STAT3 at Ser727 induced by GCDA was suppressed. Taken together, these data demonstrate that GCDA-enhanced survival of liver cancer cells may occur through the activation of STAT3 by phosphorylation at Ser727 site via mitogen-activated protein kinase/ERK1/2 pathway, which may contribute to the progression of human liver cancer and chemoresistance.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。