Human induced pluripotent stem cell derived erythroblasts can undergo definitive erythropoiesis and co-express gamma and beta globins

人类诱导性多能干细胞衍生的红细胞可以进行确定性的红细胞生成,并共同表达γ和β珠蛋白

阅读:4
作者:Cheng-Tao Yang, Anna French, Pollyanna Agnes Goh, Alistair Pagnamenta, Sachith Mettananda, Jenny Taylor, Sam Knight, Amit Nathwani, David J Roberts, Suzanne M Watt, Lee Carpenter

Abstract

Human induced pluripotent stem cells (hiPSCs), like embryonic stem cells, are under intense investigation for novel approaches to model disease and for regenerative therapies. Here, we describe the derivation and characterization of hiPSCs from a variety of sources and show that, irrespective of origin or method of reprogramming, hiPSCs can be differentiated on OP9 stroma towards a multi-lineage haemo-endothelial progenitor that can contribute to CD144(+) endothelium, CD235a(+) erythrocytes (myeloid lineage) and CD19(+) B lymphocytes (lymphoid lineage). Within the erythroblast lineage, we were able to demonstrate by single cell analysis (flow cytometry), that hiPSC-derived erythroblasts express alpha globin as previously described, and that a sub-population of these erythroblasts also express haemoglobin F (HbF), indicative of fetal definitive erythropoiesis. More notably however, we were able to demonstrate that a small sub-fraction of HbF positive erythroblasts co-expressed HbA in a highly heterogeneous manner, but analogous to cord blood-derived erythroblasts when cultured using similar methods. Moreover, the HbA expressing erythroblast population could be greatly enhanced (44·0 ± 6·04%) when a defined serum-free approach was employed to isolate a CD31(+) CD45(+) erythro-myeloid progenitor. These findings demonstrate that hiPSCs may represent a useful alternative to standard sources of erythrocytes (RBCs) for future applications in transfusion medicine.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。