PLEK2 mediates metastasis and vascular invasion via the ubiquitin-dependent degradation of SHIP2 in non-small cell lung cancer

PLEK2 通过泛素依赖性 SHIP2 降解介导非小细胞肺癌中的转移和血管侵袭

阅读:5
作者:Dong-Ming Wu, Shi-Hua Deng, Jin Zhou, Rong Han, Teng Liu, Ting Zhang, Jing Li, Jian-Ping Chen, Ying Xu

Abstract

Metastasis is the leading cause of death for non-small cell lung cancer (NSCLC) patients. However, how lung cancer cells invade blood vessels during metastasis remains unclear. Here, based on bioinformatics analyses, we found that PLEK2 might regulate NSCLC migration and vascular invasion. As little is known about the function of PLEK2 in NSCLC, we aimed to clarify this. We demonstrated that PLEK2 was significantly upregulated in transforming growth factor beta 1 (TGF-β1)-treated NSCLC cells through ELK1 transcriptional activation, highly expressed in NSCLC tissues, and negatively correlated with NSCLC overall survival. Meanwhile, PLEK2 overexpression significantly promoted NSCLC epithelial-to-mesenchymal transition (EMT) and migration, human lung microvascular endothelial cells endothelial-to-mesenchymal transition (EndoMT), and the destruction of vascular endothelial barriers. Moreover, PLEK2 knockdown inhibited TGF-β1-induced EMT and EndoMT. Furthermore, PLEK2 was found to directly interact with SHIP2 and target it for ubiquitination and degradation in NSCLC cells. Next, we confirmed that SHIP2 overexpression inhibits NSCLC EMT, migration and invasion and showed that PLEK2 overexpression can activate SHIP2-associated TGF-β/PI3K/AKT signaling. Our results suggest that PLEK2 could be a novel prognostic marker and potential therapeutic target for NSCLC metastasis and vascular invasion.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。