Nanodiamond Relaxometry-Based Detection of Free-Radical Species When Produced in Chemical Reactions in Biologically Relevant Conditions

基于纳米金刚石弛豫法检测生物相关条件下化学反应产生的自由基物质

阅读:5
作者:Felipe Perona Martínez, Anggrek Citra Nusantara, Mayeul Chipaux, Sandeep Kumar Padamati, Romana Schirhagl

Abstract

Diamond magnetometry is a quantum sensing method involving detection of magnetic resonances with nanoscale resolution. For instance, T1 relaxation measurements, inspired by equivalent concepts in magnetic resonance imaging (MRI), provide a signal that is equivalent to T1 in conventional MRI but in a nanoscale environment. We use nanodiamonds (between 40 and 120 nm) containing ensembles of specific defects called nitrogen vacancy (NV) centers. To perform a T1 relaxation measurement, we pump the NV center in the ground state (using a laser at 532 nm) and observe how long the NV center can remain in this state. Here, we use this method to provide real-time measurements of free radicals when they are generated in a chemical reaction. Specifically, we focus on the photolysis of H2O2 as well as the so-called Haber-Weiss reaction. Both of these processes are important reactions in biological environments. Unlike other fluorescent probes, diamonds are able to determine spin noise from different species in real time. We also investigate different diamond probes and their ability to sense gadolinium spin labels. Although this study was performed in a clean environment, we take into account the effects of salts and proteins that are present in a biological environment. We conduct our experiments with nanodiamonds, which are compatible with intracellular measurements. We perform measurements between 0 and 108 nM, and we are able to reach detection limits down to the nanomolar range and typically find T1 times of a few 100 μs. This is an important step toward label-free nano-MRI signal quantification in biological environments.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。