PLPPR4 haploinsufficiency causes neurodevelopmental disorders by disrupting synaptic plasticity via mTOR signalling

PLPPR4 单倍体不足通过 mTOR 信号传导破坏突触可塑性,从而导致神经发育障碍

阅读:4
作者:Huanzheng Li, Qian Zhang, Ru Wan, Lili Zhou, Xueqin Xu, Chenyang Xu, Yuan Yu, Yunzhi Xu, Yanbao Xiang, Shaohua Tang

Abstract

Phospholipid phosphatase related 4 (PLPPR4), a neuron-specific membrane protein located at the postsynaptic density of glutamatergic synapses, is a putative regulator of neuronal plasticity. However, PLPPR4 dysfunction has not been linked to genetic disorders. In this study, we report three unrelated patients with intellectual disability (ID) or autism spectrum disorder (ASD) who harbour a de novo heterozygous copy number loss of PLPPR4 in 1p21.2p21.3, a heterozygous nonsense mutation in PLPPR4 (NM_014839, c.4C > T, p.Gln2*) and a homozygous splice mutation in PLPPR4 (NM_014839: c.408 + 2 T > C), respectively. Bionano single-molecule optical mapping confirmed PLPPR4 deletion contains no additional pathogenic genes. Our results suggested that the loss of function of PLPPR4 is associated with neurodevelopmental disorders. To test the pathogenesis of PLPPR4, peripheral blood mononuclear cells obtained from the patient with heterozygous deletion of PLPPR4 were induced to specific iPSCs (CHWi001-A) and then differentiated into neurons. The neurons carrying the deletion of PLPPR4 displayed the reduced density of dendritic protrusions, shorter neurites and reduced axon length, suggesting the causal role of PLPPR4 in neurodevelopmental disorders. As the mTOR signalling pathway was essential for regulating the axon maturation and function, we found that mTOR signalling was inhibited with a higher level of p-AKT, p-mTOR and p-ERK1/2, decreased p-PI3K in PLPPR4-iPSCs neurons. Additionally, we found silencing PLPPR4 disturbed the mTOR signalling pathway. Our results suggested PLPPR4 modulates neurodevelopment by affecting the plasticity of neurons via the mTOR signalling pathway.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。