A Scalable 3D High-Content Imaging Protocol for Measuring a Drug Induced DNA Damage Response Using Immunofluorescent Subnuclear γH2AX Spots in Patient Derived Ovarian Cancer Organoids

一种可扩展的 3D 高内涵成像方案,使用患者来源的卵巢癌类器官中的免疫荧光亚核 γH2AX 斑点来测量药物诱导的 DNA 损伤反应

阅读:6
作者:Hakan Keles, Christopher A Schofield, Helena Rannikmae, Erin Elizabeth Edwards, Lisa Mohamet

Abstract

The high morbidity rate of ovarian cancer has remained unchanged during the past four decades, partly due to a lack of understanding of disease mechanisms and difficulties in developing new targeted therapies. Defective DNA damage detection and repair is one of the hallmarks of cancer cells and is a defining characteristic of ovarian cancer. Most in vitro studies to date involve viability measurements at scale using relevant cancer cell lines; however, the translation to the clinic is often lacking. The use of patient derived organoids is closing that translational gap, yet the 3D nature of organoid cultures presents challenges for assay measurements beyond viability measurements. In particular, high-content imaging has the potential for screening at scale, providing a better understanding of the mechanism of action of drugs or genetic perturbagens. In this study we report a semiautomated and scalable immunofluorescence imaging assay utilizing the development of a 384-well plate based subnuclear staining and clearing protocol and optimization of 3D confocal image analysis for studying DNA damage dose response in human ovarian cancer organoids. The assay was validated in four organoid models and demonstrated a predictable response to etoposide drug treatment with the lowest efficacy observed in the clinically most resistant model. This imaging and analysis method can be applied to other 3D organoid and spheroid models for use in high content screening.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。