Estrogen Metabolite 16α-Hydroxyestrone Exacerbates Bone Morphogenetic Protein Receptor Type II-Associated Pulmonary Arterial Hypertension Through MicroRNA-29-Mediated Modulation of Cellular Metabolism

雌激素代谢物 16α-羟基雌酮通过 microRNA-29 介导的细胞代谢调节加剧骨形态发生蛋白受体 II 型相关肺动脉高压

阅读:7
作者:Xinping Chen, Megha Talati, Joshua P Fessel, Anna R Hemnes, Santhi Gladson, Jaketa French, Sheila Shay, Aaron Trammell, John A Phillips, Rizwan Hamid, Joy D Cogan, Elliott P Dawson, Kristie E Womble, Lora K Hedges, Elizabeth G Martinez, Lisa A Wheeler, James E Loyd, Susan J Majka, James West, Eric D

Background

Pulmonary arterial hypertension (PAH) is a proliferative disease of the pulmonary vasculature that preferentially affects women. Estrogens such as the metabolite 16α-hydroxyestrone (16αOHE) may contribute to PAH pathogenesis, and alterations in cellular energy metabolism associate with PAH. We hypothesized that 16αOHE promotes heritable PAH (HPAH) via microRNA-29 (miR-29) family upregulation and that antagonism of miR-29 would attenuate pulmonary hypertension in transgenic mouse models of Bmpr2 mutation.

Conclusions

16αOHE promotes the development of HPAH via upregulation of miR-29, which alters molecular and functional indexes of energy metabolism. Antagonism of miR-29 improves in vivo and in vitro features of HPAH and reveals a possible novel therapeutic target.

Results

MicroRNA array profiling of human lung tissue found elevation of microRNAs associated with energy metabolism, including the miR-29 family, among HPAH patients. miR-29 expression was 2-fold higher in Bmpr2 mutant mice lungs at baseline compared with controls and 4 to 8-fold higher in Bmpr2 mice exposed to 16αOHE 1.25 μg/h for 4 weeks. Blot analyses of Bmpr2 mouse lung protein showed significant reductions in peroxisome proliferator-activated receptor-γ and CD36 in those mice exposed to 16αOHE and protein derived from HPAH lungs compared with controls. Bmpr2 mice treated with anti-miR-29 (20-mg/kg injections for 6 weeks) had improvements in hemodynamic profile, histology, and markers of dysregulated energy metabolism compared with controls. Pulmonary artery smooth muscle cells derived from Bmpr2 murine lungs demonstrated mitochondrial abnormalities, which improved with anti-miR-29 transfection in vitro; endothelial-like cells derived from HPAH patient induced pluripotent stem cell lines were similar and improved with anti-miR-29 treatment. Conclusions: 16αOHE promotes the development of HPAH via upregulation of miR-29, which alters molecular and functional indexes of energy metabolism. Antagonism of miR-29 improves in vivo and in vitro features of HPAH and reveals a possible novel therapeutic target.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。