Disruption of the IL-33-ST2-AKT signaling axis impairs neurodevelopment by inhibiting microglial metabolic adaptation and phagocytic function

IL-33-ST2-AKT信号通路紊乱会抑制小胶质细胞的代谢适应和吞噬功能,从而损害神经发育。

阅读:2
作者:Danyang He ,Heping Xu ,Huiyuan Zhang ,Ruihan Tang ,Yangning Lan ,Ruxiao Xing ,Shaomin Li ,Elena Christian ,Yu Hou ,Paul Lorello ,Barbara Caldarone ,Jiarui Ding ,Lan Nguyen ,Danielle Dionne ,Pratiksha Thakore ,Alexandra Schnell ,Jun R Huh ,Orit Rozenblatt-Rosen ,Aviv Regev ,Vijay K Kuchroo

Abstract

To accommodate the changing needs of the developing brain, microglia must undergo substantial morphological, phenotypic, and functional reprogramming. Here, we examined whether cellular metabolism regulates microglial function during neurodevelopment. Microglial mitochondria bioenergetics correlated with and were functionally coupled to phagocytic activity in the developing brain. Transcriptional profiling of microglia with diverse metabolic profiles revealed an activation signature wherein the interleukin (IL)-33 signaling axis is associated with phagocytic activity. Genetic perturbation of IL-33 or its receptor ST2 led to microglial dystrophy, impaired synaptic function, and behavioral abnormalities. Conditional deletion of Il33 from astrocytes or Il1rl1, encoding ST2, in microglia increased susceptibility to seizures. Mechanistically, IL-33 promoted mitochondrial activity and phagocytosis in an AKT-dependent manner. Mitochondrial metabolism and AKT activity were temporally regulated in vivo. Thus, a microglia-astrocyte circuit mediated by the IL-33-ST2-AKT signaling axis supports microglial metabolic adaptation and phagocytic function during early development, with implications for neurodevelopmental and neuropsychiatric disorders.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。