Therapeutic effects of pentoxifylline on diabetic heart tissue via NOS

己酮可可碱通过一氧化氮合酶对糖尿病心脏组织的治疗作用

阅读:6
作者:Derya Karabulut, Hasan Basri Ulusoy, Emin Kaymak, Mehmet Fatih Sönmez

Conclusion

As a result, we found that diabetes, a known chronic disease, causes serious damage in heart tissue. NOS plays a role in this damage, and pentoxifylline aided in improving nNOS and iNOS expression in this damage.

Methods

In this experimental study, 50 Wistar albino male rats were used. The rats were divided into 5 groups: group C, control; group D, only diabetes; group D+PI and D+PII, diabetes + pentoxifylline; group P, only pentoxifylline. Group D+PI rats received 50 mg/kg/day pentoxifylline over two months. However, group D+PII rats received saline in the first month and 50 mg/kg/day of pentoxifylline over the following month. At the end of two months, NOS expressions in heart tissue were assessed through immunohistochemistry analysis. The data were compared by one-way ANOVA.

Objective

Diabetes mellitus causes a decrease in cardiac output, arterial blood pressure, and heart rate. In this study, we aimed to investigate, at the molecular level, the effect of nitric oxide synthase (NOS) on heart pathology in type 1 diabetes and look at the therapeutic effect of pentoxifylline on this pathology.

Results

At the end of the experiments, there was increased cytoplasmic vacuolization, myofibrillar loss, cytoplasmic eosinophilia, and degeneration of cardiomyocytes; nNOS and iNOS expressions in group D decreased compared with that in group C. In group D+PI and group D+PII, nNOS and iNOS expressions improved compared with group D.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。