CXCL1-LCN2 paracrine axis promotes progression of prostate cancer via the Src activation and epithelial-mesenchymal transition

CXCL1-LCN2 旁分泌轴通过 Src 激活和上皮-间质转化促进前列腺癌进展

阅读:6
作者:Yongning Lu, Baijun Dong, Fan Xu, Yunze Xu, Jiahua Pan, Jiajia Song, Jin Zhang, Yiran Huang, Wei Xue

Background

Mechanisms driving the progression of castration-resistant prostate cancer are believed to relate substantially to the tumor microenvironment. However, the cross-talks between tumor epithelial cell, stromal cells, and immune cells are yet to be fully elucidated. The present study aims to determine the role of chemokine and neutrophil derived cytokine paracrine axis in mediating the interaction between tumor cells, stromal myofibroblasts, and neutrophils in the tumor microenvironment of prostate cancer.

Conclusions

Our findings may provide enhanced insight into the interactions of carcinoma-stromal cells and immune cells linked to prostate cancer progression, wherein CXCL1-LCN2 axis is a key contributor to prostate cancer cells migration. These data indicate tumor microenvironment and Src signaling pathway may be potential therapeutic targets of prostate cancer treatment.

Methods

To identify myofibroblasts and neutrophil derived specific proteins affecting progression of prostate cancer, bioinformatics analyses were firstly performed in independent human prostate cancer gene expression data sets from the GEO data bank. Expression of stromal myofibroblasts secretory chemokine CXCL1 and neutrophil derived cytokine LCN2 was evaluated in prostate tissues via immunohistochemistry assay. We further investigated the effect of CXCL1 and LCN2 on prostate cancer using in vivo and in vitro models, and explored the underlying signal transduction pathways.

Results

A CXCL1-LCN2 paracrine network was confirmed in prostate cancer tissue samples, which was correlated with the biochemical recurrence of prostate cancer. Of note, CXCL1-LCN2 axis activates Src signaling, triggers the epithelial-mesenchymal transition (EMT), consequently promotes the migration of prostate cancer cells, leading to enhanced tumor metastasis. Conclusions: Our findings may provide enhanced insight into the interactions of carcinoma-stromal cells and immune cells linked to prostate cancer progression, wherein CXCL1-LCN2 axis is a key contributor to prostate cancer cells migration. These data indicate tumor microenvironment and Src signaling pathway may be potential therapeutic targets of prostate cancer treatment.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。