OTX1 regulates cell cycle progression of neural progenitors in the developing cerebral cortex

OTX1 调节发育大脑皮层中神经祖细胞的细胞周期进程

阅读:4
作者:Baoshan Huang, Xue Li, Xiaomeng Tu, Wei Zhao, Dan Zhu, Yue Feng, Xiang Si, Jie-Guang Chen

Abstract

The progenitor cells in the cerebral cortex coordinate proliferation and mitotic exit to generate the correct number of neurons and glial cells during development. However, mechanisms for regulating the mitotic cycle of cortical progenitors are not fully understood. Otx1 is one of the homeobox-containing transcription factors frequently implicated in the development of the central nervous system. Mice bearing a targeted deletion of Otx1 exhibit brain hypoplasia and a decrease in the number of cortical neurons. We hypothesized that Otx1 might be crucial to the proliferation and differentiation of cortical progenitors. Otx1 knockdown by in utero electroporation in the mouse brain reduced the proportion of the G1 phase while increasing the S and M phases of progenitor cells. The knockdown diminished Tbr1+ neurons but increased GFAP+ astrocytes in the early postnatal cortex as revealed by lineage tracing study. Tbr2+ basal progenitors lacking Otx1 were held at the transit-amplifying stage. In contrast, overexpression of wildtype Otx1 but not an astrocytoma-related mutant Y320C inhibited proliferation of the progenitor cells in embryonic cortex. This study demonstrates that Otx1 is one of the key elements regulating cortical neurogenesis, and a loss-of-function in Otx1 may contribute to the overproduction of astrocytes in vivo.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。