Saponin treatment for eukaryotic DNA depletion alters the microbial DNA profiles by reducing the abundance of Gram-negative bacteria in metagenomics analyses

皂苷处理真核生物 DNA 耗竭后,通过减少宏基因组学分析中革兰氏阴性细菌的丰度来改变微生物 DNA 谱

阅读:10
作者:Giulia Longhi, Chiara Argentini, Federico Fontana, Chiara Tarracchini, Leonardo Mancabelli, Gabriele Andrea Lugli, Giulia Alessandri, Edith Lahner, Giulia Pivetta, Francesca Turroni, Marco Ventura, Christian Milani

Background

Recent advances in microbiome sequencing techniques have provided new insights into the role of the microbiome on human health with potential diagnostic implications. However, these developments are often hampered by the presence of a large amount of human DNA interfering with the analysis of the bacterial content. Nowadays, extensive scientific literature focuses on eukaryotic DNA depletion

Conclusion

The application of the saponin-based protocol drastically changes the detection of the microbial composition of human-related biological specimens. In this context, we revealed that saponin targets not only host cells but also specific bacterial cells, thus inducing a drastic reduction in the profiling of Gram-negative bacterial DNA.

Methods

Here, we have investigated a saponin-based DNA isolation protocol commonly applied to different biological matrices to deplete the released host DNA.

Results

The bacterial DNA obtained was used to assess the relative abundance of bacterial and human DNA, revealing that the inclusion of 2.5% wt/vol saponin allowed the depletion of most of the host's DNA in favor of bacterial DNA enrichment. However, shotgun metagenomic sequencing showed inaccurate microbial profiles of the DNA samples, highlighting an erroneous increase in Gram-positive DNA. Even the application of 0.0125% wt/vol saponin altered the bacterial profile by depleting Gram-negative bacteria, resulting in an overall increase of Gram-positive bacterial DNA.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。