Gene silencing by double-stranded RNA from C. elegans neurons reveals functional mosaicism of RNA interference

秀丽隐杆线虫神经元双链 RNA 基因沉默揭示了 RNA 干扰的功能嵌合性

阅读:6
作者:Snusha Ravikumar, Sindhuja Devanapally, Antony M Jose

Abstract

Delivery of double-stranded RNA (dsRNA) into animals can silence genes of matching sequence in diverse cell types through mechanisms that have been collectively called RNA interference. In the nematode Caenorhabditis elegans, dsRNA from multiple sources can trigger the amplification of silencing signals. Amplification occurs through the production of small RNAs by two RNA-dependent RNA polymerases (RdRPs) that are thought to be tissue-specific - EGO-1 in the germline and RRF-1 in somatic cells. Here we demonstrate that EGO-1 can compensate for the lack of RRF-1 when dsRNA from neurons is used to silence genes in intestinal cells. However, the lineal origins of cells that can use EGO-1 varies. This variability could be because random sets of cells can either receive different amounts of dsRNA from the same source or use different RdRPs to perform the same function. Variability is masked in wild-type animals, which show extensive silencing by neuronal dsRNA. As a result, cells appear similarly functional despite underlying differences that vary from animal to animal. This functional mosaicism cautions against inferring uniformity of mechanism based on uniformity of outcome. We speculate that functional mosaicism could contribute to escape from targeted therapies and could allow developmental systems to drift over evolutionary time.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。