(1- x)(Na₀.₅Bi₀.₅)TiO₃- x CaTiO₃ ceramics: Investigating structural and microstructural features for enhanced dielectric properties

(1- x)(Na₀.₅Bi₀.₅)TiO₃- x CaTiO₃ 陶瓷:研究结构和微观结构特征以增强介电性能

阅读:8
作者:M Mesrar, H Majdoubi, Yan Le

Abstract

(1-x)(Na&sub0;.₅Bi&sub0;.₅)TiO&sub3;-xCaTiO&sub3; Lead-free piezoelectric systems, positioned near the morphotropic phase boundary, were synthesized for varying compositions (x = 0.0, 0.05, 0.10, 0.15, and 0.20) using the solid-state reaction route. This study delves into the comprehensive investigation of the compositional effects on phase, structure, and electrical characteristics. Specifically, a morphotropic phase boundary (MPB) involving rhombohedral (R3c) and orthorhombic (Pnma) structures was seen in a (1-x)NBT-xCT crystal structure close to the composition of x = 0.10. Information on the pure phase formation and grain size of the intended composite system has been obtained using Rietveld refinement of the X-ray diffraction (XRD) diagram as well as scanning electron microscopy (SEM). The impact of the CT phase on the NBT lattice was investigated through an analysis of the charge density distribution. Using Williamson-Hall plots from XRD data, the average particle diameter was estimated to be between 131.87 nm and 136.54 nm. The relative permittivity increases with the addition of Ca2+, according to dielectric measurements. All ceramics exhibit a diffuse phase transition near (Tm) with a diffusivity range of 1.5-1.8, and a downward shift in depolarization temperature (Td). At the morphotropic phase boundary (MPB), excellent dielectric properties were observed at x = 0.10, which are attributed to the presence of both rhombohedral and orthorhombic structures as well as an appropriate particle size. The conduction process at different temperatures is thermally activated, as determined by the frequency-dependent ac conductivity.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。