ST2825, independent of MyD88, induces reactive oxygen species-dependent apoptosis in multiple myeloma cells

ST2825 不依赖 MyD88,诱导多发性骨髓瘤细胞中活性氧依赖性细胞凋亡

阅读:5
作者:Hajime Nakamura, Yohei Arihara, Makoto Usami, Kohichi Takada

Abstract

Myeloid differentiation factor 88 (MyD88), which is a key regulator of nuclear factor kappa B (NF-κB), plays an important role in tumorigenesis in lymphoid malignancies such as Waldenstrom's macroglobulinemia (WM). However, its biological function in multiple myeloma (MM), which is a malignant plasma cell disorder like WM, remains unexplored. In this article, we first demonstrated that higher expression MyD88 was significantly correlated with poor survival in patients with MM using multiple publicly available datasets. Interestingly, bioinformatic analysis also revealed that MyD88 gene alteration, which is recognized in nearly 80% of patients with WM, was extremely rare in MM. In addition, ST2825 (a specific inhibitor of MyD88) suppressed cell growth followed by apoptosis. Furthermore, ST2825 induced intracellular reactive oxygen species (ROS) in MM cells, and N-acetyl-l-cysteine, which is known as a ROS scavenger, significantly decreased the number of apoptotic MM cells evoked by ST2825 treatment. Taken together, our results indicated that ST2825 leads to ROS-dependent apoptosis in MM cells and could be an attractive therapeutic candidate for patients with MM. By highlighting the pathological mechanism of MyD88 in MM, this study also provides novel treatment strategies to conquer MM.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。