Characterization of the impact of glutaredoxin-2 (GRX2) deficiency on superoxide/hydrogen peroxide release from cardiac and liver mitochondria

谷胱甘肽-2(GRX2)缺乏对心脏和肝脏线粒体超氧化物/过氧化氢释放的影响的表征

阅读:6
作者:Julia Chalker, Danielle Gardiner, Nidhi Kuksal, Ryan J Mailloux

Abstract

Mitochondria are critical sources of hydrogen peroxide (H2O2), an important secondary messenger in mammalian cells. Recent work has shown that O2•-/H2O2 emission from individual sites of production in mitochondria is regulated by protein S-glutathionylation. Here, we conducted the first examination of O2•-/H2O2 release rates from cardiac and liver mitochondria isolated from mice deficient for glutaredoxin-2 (GRX2), a matrix-associated thiol oxidoreductase that facilitates the S-glutathionylation and deglutathionylation of proteins. Liver mitochondria isolated from mice heterozygous (GRX2+/-) and homozygous (GRX2-/-) for glutaredoxin-2 displayed a significant decrease in O2•-/H2O2 release when oxidizing pyruvate or 2-oxoglutarate. The genetic deletion of the Grx2 gene was associated with increased protein expression of pyruvate dehydrogenase (PDH) but not 2-oxoglutarate dehydrogenase (OGDH). By contrast, O2•-/H2O2 production was augmented in cardiac mitochondria from GRX2+/- and GRX2-/- mice metabolizing pyruvate or 2-oxoglutarate which was associated with decreased PDH and OGDH protein levels. ROS production was augmented in liver and cardiac mitochondria metabolizing succinate. Inhibitor studies revealed that OGDH and Complex III served as high capacity ROS release sites in liver mitochondria. By contrast, Complex I and Complex III were found to be the chief O2•-/H2O2 emitters in cardiac mitochondria. These findings identify an essential role for GRX2 in regulating O2•-/H2O2 release from mitochondria in liver and cardiac tissue. Our results demonstrate that the GRX2-mediated regulation of O2•-/H2O2 release through the S-glutathionylation of mitochondrial proteins may play an integral role in controlling cellular ROS signaling.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。