PXR triggers YAP-TEAD binding and Sirt2-driven YAP deacetylation and polyubiquitination to promote liver enlargement and regeneration in mice

PXR 触发 YAP-TEAD 结合和 Sirt2 驱动的 YAP 去乙酰化和多泛素化,促进小鼠肝脏增大和再生

阅读:5
作者:Shuaishuai Zhang, Manlan Guo, Xiaowen Jiang, Lan Tang, Ting Wu, Guofang Bi, Xiao Yang, Shicheng Fan, Huichang Bi

Abstract

Pregnane X receptor (PXR) plays an important role in the regulation of metabolic homeostasis. Yes-associated protein (YAP) is a critical regulator of liver size and liver regeneration. Recently, we reported that PXR-induced liver enlargement and regeneration depend on YAP signalling, but the underlying mechanisms remain unclear. This study aimed to reveal how PXR regulates or interacts with YAP signalling during PXR-induced hepatomegaly and liver regeneration. Immunoprecipitation (IP), Co-IP and GST pull-down assays were performed in vitro to reveal the regulatory mechanisms involved in the PXR-YAP interaction. The roles of YAP-TEAD binding and Sirt2-driven deacetylation and polyubiquitination of YAP were further investigated in vitro and in vivo. The results showed that the ligand-binding domain (LBD) of PXR and the WW domain of YAP were critical for the PXR-YAP interaction. Furthermore, disruption of the YAP-TEAD interaction using the binding inhibitor verteporfin significantly decreased PXR-induced liver enlargement and regeneration after 70 % partial hepatectomy (PHx). Mechanistically, PXR activation significantly decreased YAP acetylation, which was interrupted by the sirtuin inhibitor nicotinamide (NAM). In addition, p300-induced YAP acetylation contributed to K48-linked YAP ubiquitination. Interestingly, PXR activation remarkably inhibited K48-linked YAP ubiquitination while inducing K63-linked YAP polyubiquitination. Sirt2 interference abolished the deacetylation and K63-linked polyubiquitination of YAP, suggesting that the PXR-induced deacetylation and polyubiquitination of YAP are Sirt2 dependent. Taken together, this study demonstrates that PXR induce liver enlargement and regeneration via the regulation of YAP acetylation and ubiquitination and YAP-TEAD binding, providing evidences for using PXR as potential target to promote hepatic development and liver repair.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。