Soluble VCAM-1 promotes gemcitabine resistance via macrophage infiltration and predicts therapeutic response in pancreatic cancer

可溶性 VCAM-1 通过巨噬细胞浸润促进吉西他滨耐药性并预测胰腺癌的治疗反应

阅读:4
作者:Ryota Takahashi, Hideaki Ijichi, Makoto Sano, Koji Miyabayashi, Dai Mohri, Jinsuk Kim, Gen Kimura, Takuma Nakatsuka, Hiroaki Fujiwara, Keisuke Yamamoto, Yotaro Kudo, Yasuo Tanaka, Keisuke Tateishi, Yousuke Nakai, Yasuyuki Morishita, Katsura Soma, Norihiko Takeda, Harold L Moses, Hiroyuki Isayama, Ka

Abstract

Pancreatic cancer is one of the malignant diseases with the worst prognosis. Resistance to chemotherapy is a major difficulty in treating the disease. We analyzed plasma samples from a genetically engineered mouse model of pancreatic cancer and found soluble vascular cell adhesion molecule-1 (sVCAM-1) increases in response to gemcitabine treatment. VCAM-1 was expressed and secreted by murine and human pancreatic cancer cells. Subcutaneous allograft tumors with overexpression or knock-down of VCAM-1, as well as VCAM-1-blocking treatment in the spontaneous mouse model of pancreatic cancer, revealed that sVCAM-1 promotes tumor growth and resistance to gemcitabine treatment in vivo but not in vitro. By analyzing allograft tumors and co-culture experiments, we found macrophages were attracted by sVCAM-1 to the tumor microenvironment and facilitated resistance to gemcitabine in tumor cells. In a clinical setting, we found that the change of sVCAM-1 in the plasma of patients with advanced pancreatic cancer was an independent prognostic factor for gemcitabine treatment. Collectively, gemcitabine treatment increases the release of sVCAM-1 from pancreatic cancer cells, which attracts macrophages into the tumor, thereby promoting the resistance to gemcitabine treatment. sVCAM-1 may be a potent clinical biomarker and a potential target for the therapy in pancreatic cancer.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。