Quinovic Acid Impedes Cholesterol Dyshomeostasis, Oxidative Stress, and Neurodegeneration in an Amyloid- β-Induced Mouse Model

奎诺酸可抑制淀粉样β蛋白诱导的小鼠模型中的胆固醇失衡、氧化应激和神经退行性病变

阅读:4
作者:Kamran Saeed, Shahid Ali Shah, Rahat Ullah, Sayed Ibrar Alam, Jun Sung Park, Samreen Saleem, Myeung Hoon Jo, Min Woo Kim, Jong Ryeal Hahm, Myeong Ok Kim

Abstract

Alzheimer's disease (AD) is a progressive neurodegenerative disorder typified by several neuropathological features including amyloid-beta (Aβ) plaque and neurofibrillary tangles (NFTs). Cholesterol retention and oxidative stress (OS) are the major contributors of elevated β- and γ-secretase activities, leading to excessive Aβ deposition, signifying the importance of altered cholesterol homeostasis and OS in the progression of Aβ-mediated neurodegeneration and cognitive deficit. However, the effect of Aβ on cholesterol metabolism is lesser-known. In this study, we evaluated the effect of quinovic acid (QA; 50 mg/kg body weight, i.p.) against the intracerebroventricular (i.c.v.) injection of Aβ (1-42)-induced cholesterol dyshomeostasis, oxidative stress, and neurodegeneration in the cortex and hippocampal brain regions of wild-type male C57BL/6J mice. Our results indicated that Aβ (1-42)-treated mice have increased Aβ oligomer formation along with increased β-secretase expression. The enhanced amyloidogenic pathway in Aβ (1-42)-treated mice intensified brain cholesterol accumulation due to increased expressions of p53 and 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR) enzyme. Importantly, we further confirmed the p53-mediated HMGCR axis activation by using pifithrin-α (PFT) in SH-SY5Y cells. Furthermore, the augmented brain cholesterol levels were also associated with increased OS. However, the QA administration to Aβ (1-42)-injected mice significantly ameliorated the Aβ burden, p53 expression, and cholesterol accumulation by deterring the oxidative stress through upregulating the Nrf2/HO-1 pathway. Moreover, the QA downregulated gliosis, neuroinflammatory mediators (p-NF-κB and IL-1β), and the expression of mitochondrial apoptotic markers (Bax, cleaved caspase-3, and cytochrome c). QA treatment also reversed the deregulated synaptic markers (PSD-95 and synaptophysin) and improved spatial learning and memory behaviors in the Aβ-treated mouse brains. These results suggest that Aβ (1-42) induces its acute detrimental effects on cognitive functions probably by increasing brain cholesterol levels through a possible activation of the p53/HMGCR axis. However, QA treatment reduces the cholesterol-induced oxidative stress, neuroinflammation, and neurodegeneration, leading to the restoration of cognitive deficit after Aβ (1-42) i.c.v. injection in mice.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。