Undaria pinnatifida (Wakame) Intake Ameliorates High-Fat Diet-Induced Glucose Intolerance via Promoting GLUT4 Expression and Membrane Translocation in Muscle

裙带菜 (Wakame) 摄入可通过促进肌肉中的 GLUT4 表达和膜转位来改善高脂饮食引起的葡萄糖不耐受

阅读:7
作者:Motoki Imai, Fumitaka Kawakami, Mutsumi Chiba, Makoto Kanzaki, Hiroko Maruyama

Abstract

Type 2 diabetes mellitus (T2DM), a lifestyle-related disease, is developed due to eating habits and decreased physical activity. Diabetes also increases the risk of cancer and major neurodegenerative diseases; controlling the onset of diabetes helps prevent various illnesses. Eating seaweed, such as Undaria pinnatifida (wakame), is a part of the Asian food culture. Therefore, we analyzed the antidiabetic effect of wakame intake using the high-fat diet-induced diabetes mouse model. Furthermore, we analyzed the effect of wakame extract on the cell membrane translocation of glucose transporter-4 (GLUT4) and activation of insulin signal molecules, such as AKT and AMPK, in insulin-sensitive tissues. Differentiated C2C12 cells were incubated with wakame components. The membrane translocation of GLUT4 and phosphorylation of AKT and AMPK were investigated with immunofluorescence staining and Western blotting, respectively. Also, male C57BL/6J mice were fed the normal diet (ND), high-fat diet (HFD), ND with 1% wakame powder (ND + W), or HFD with 1% wakame powder (HFD + W). We evaluated the effect of wakame intake on high-fat diet-induced glucose intolerance using an oral glucose tolerance test. Moreover, we analyzed insulin signaling molecules, such as GLUT4, AKT, and AMPK, in muscle using Western blotting. GLUT4 membrane translocation was promoted by wakame components. Also, GLUT4 levels and AKT and AMPK phosphorylation were significantly elevated by wakame components in C2C12 cells. In addition, the area under the curve (AUC) of the HFD + W group was significantly smaller than that of the HFD group. Furthermore, the level of GLUT4 in the muscle was increased in the wakame intake group. This study revealed that various wakame components exerted antidiabetic effects on the mice on a high-fat diet by promoting glucose uptake in the skeletal muscle, enhancing GLUT4 levels, and activating AKT and AMPK.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。