Designing a retrievable and scalable cell encapsulation device for potential treatment of type 1 diabetes

设计可回收、可扩展的细胞封装装置,用于治疗 1 型糖尿病

阅读:5
作者:Duo An, Alan Chiu, James A Flanders, Wei Song, Dahua Shou, Yen-Chun Lu, Lars G Grunnet, Louise Winkel, Camilla Ingvorsen, Nicolaj Strøyer Christophersen, Johannes Josef Fels, Fredrik Wolfhagen Sand, Yewei Ji, Ling Qi, Yehudah Pardo, Dan Luo, Meredith Silberstein, Jintu Fan, Minglin Ma

Abstract

Cell encapsulation has been shown to hold promise for effective, long-term treatment of type 1 diabetes (T1D). However, challenges remain for its clinical applications. For example, there is an unmet need for an encapsulation system that is capable of delivering sufficient cell mass while still allowing convenient retrieval or replacement. Here, we report a simple cell encapsulation design that is readily scalable and conveniently retrievable. The key to this design was to engineer a highly wettable, Ca2+-releasing nanoporous polymer thread that promoted uniform in situ cross-linking and strong adhesion of a thin layer of alginate hydrogel around the thread. The device provided immunoprotection of rat islets in immunocompetent C57BL/6 mice in a short-term (1-mo) study, similar to neat alginate fibers. However, the mechanical property of the device, critical for handling and retrieval, was much more robust than the neat alginate fibers due to the reinforcement of the central thread. It also had facile mass transfer due to the short diffusion distance. We demonstrated the therapeutic potential of the device through the correction of chemically induced diabetes in C57BL/6 mice using rat islets for 3 mo as well as in immunodeficient SCID-Beige mice using human islets for 4 mo. We further showed, as a proof of concept, the scalability and retrievability in dogs. After 1 mo of implantation in dogs, the device could be rapidly retrieved through a minimally invasive laparoscopic procedure. This encapsulation device may contribute to a cellular therapy for T1D because of its retrievability and scale-up potential.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。