Ferroptosis-related genes with post-transcriptional regulation mechanisms in hepatocellular carcinoma determined by bioinformatics and experimental validation

通过生物信息学和实验验证确定肝细胞癌中铁死亡相关基因及其转录后调控机制

阅读:8
作者:Renfei Zhu #, Cheng Gao #, Qiuqi Feng #, Haitao Guan #, Jianjun Wu, Hrishikesh Samant, Fan Yang, Xuehao Wang

Background

Ferroptosis is a form of iron-dependent cell death with increased free iron and massive lipid peroxidation. The discovery of ferroptosis offers insights into hepatocellular carcinoma (HCC) treatment. However, post-transcriptional regulation mechanisms of ferroptosis in HCC remain to be elucidated. The present study explored ferroptosis-related genes and their post-transcriptional regulation mechanisms in HCC.

Conclusions

Overall, our findings determined ferroptosis-related genes post-transcriptionally regulated by circRNA/miRNA and m1A/m5C/m6A RNA modifications, and experiments demonstrated that loss of NUDCD1 may facilitate the ferroptosis of HCC cells, which provides novel insights into the regulatory mechanisms of ferroptosis in HCC.

Methods

A ferroptosis score was computed in The Cancer Genome Atlas (TCGA) cohort via gene set variation analysis (GSVA), and ferroptosis-related genes were screened by differential expression and correlation analyses. CircRNA/miRNA-mediated ferroptosis-related genes were predicted, and associations of ferroptosis-related genes with m1A/m5C/m6A regulators were analyzed. Immune cell infiltrations were inferred via CIBERSORT. NUDCD1 expression was examined in L-02, SMMC7721, and HepG2 cells via real time quantitative polymerase chain reaction (RT-qPCR) and western blots. After NUDCD1 was silenced, cell viability, glutathione peroxidase 4 (GPX4) and ferritin heavy chain 1 (FTH1) expression, and oxidized glutathione/glutathione (GSSG/GSH) and glutathione (GSH) levels were detected in SMMC7721 and HepG2 cells.

Results

The ferroptosis score was linked to poor overall survival (OS) of HCC, which was independent of other clinicopathological parameters. Ten ferroptosis-related genes were determined, namely UGT1A6, ATP6V1C1, MAFG, NUDCD1, PPP1R1A, TSKU, CTSB, AIFM2, CTSA, and CTNND2, which were post-transcriptionally regulated by circRNA/miRNA and m1A/m5C/m6A modifications in HCC. Most were significantly linked with most immune cell compositions within the immune microenvironment, and contributed to undesirable clinical outcomes. NUDCD1 was up-regulated in HCC cells, and its loss facilitated the ferroptosis of HCC cells. Conclusions: Overall, our findings determined ferroptosis-related genes post-transcriptionally regulated by circRNA/miRNA and m1A/m5C/m6A RNA modifications, and experiments demonstrated that loss of NUDCD1 may facilitate the ferroptosis of HCC cells, which provides novel insights into the regulatory mechanisms of ferroptosis in HCC.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。