Transcriptome sequencing analysis of the role of β-catenin in F-actin reorganization in embryonic palatal mesenchymal cells

转录组测序分析β-catenin在胚胎腭间充质细胞F-肌动蛋白重组中的作用

阅读:8
作者:Weilong Liu, Yong Lu, Bing Shi, Chenghao Li

Background

Palatogenesis is a highly regulated and coordinated developmental process that is coordinated by multiple transcription factors and signaling pathways. Our previous studies identified that defective palatal shelf reorientation due to aberrant mesenchymal β-catenin signaling is associated with Filamentous actin (F-actin) dysregulation. Herein, the underlying mechanism of mesenchymal β-catenin in regulating F-actin cytoskeleton reorganization is further investigated.

Conclusions

Our study provides an expression landscape of DEGs in β-catenin silenced and overexpressed MEPM cells, which emphasizes the important role of processes such as chemotactic factor and cell migration. Our data gain deeper insight into genes associated with F-actin reorganization that is regulated by β-catenin either directly or by another route, which will contribute to further investigation of the exact mechanism of mesenchymal β-catenin/F-actin in palatal shelf reorientation.

Methods

Firstly, β-catenin silenced and overexpressed mouse embryonic palatal mesenchymal (MEPM) cells were established by adenovirus-mediated transduction. Subsequently, we compared transcriptomes of negative control (NC) group, β-catenin knockdown (KD) group, or β-catenin overexpression group respectively using RNA-sequencing (RNA-seq), and differentially expressed genes (DEGs) screened were further identified by quantitative real-time polymerase chain reaction (qRT-PCR). Finally, in vivo experiments further verified the expression change of critical molecules.

Results

We discovered 184 and 522 DEGs in the knockdown and overexpression groups compared to the NC group, respectively (adjusted P<0.05; |fold change| >2.0). Among these, 106 DEGs were altered in both groups. Gene Ontology (GO) enrichment analysis relating to biological functions identified cytokine-cytokine receptor interaction, and positive modulation of cellular migration. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment assessment indicated that these DEGs were chiefly linked by the regulation of signaling receptor activity and chemokine signaling pathways. Quantitative real-time polymerase chain reaction (qRT-PCR) results showed that the similar expression trend of serum amyloid A3 (Saa3) and CXC-chemokine ligand 5 (Cxcl5) possibly involved in cytoskeletal rearrangement with RNA-seq data. Experiments in vivo displayed that no significant expression change of Saa3 and Cxcl5 was observed in β-catenin knockout and overexpressed mouse models. Conclusions: Our study provides an expression landscape of DEGs in β-catenin silenced and overexpressed MEPM cells, which emphasizes the important role of processes such as chemotactic factor and cell migration. Our data gain deeper insight into genes associated with F-actin reorganization that is regulated by β-catenin either directly or by another route, which will contribute to further investigation of the exact mechanism of mesenchymal β-catenin/F-actin in palatal shelf reorientation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。