RIP1/RIP3/MLKL mediates dopaminergic neuron necroptosis in a mouse model of Parkinson disease

RIP1/RIP3/MLKL 介导帕金森病小鼠模型中的多巴胺能神经元坏死性凋亡

阅读:6
作者:Qing-Song Lin #, Ping Chen #, Wei-Xiong Wang, Chen-Chao Lin, Yao Zhou, Liang-Hong Yu, Yuan-Xiang Lin, Yan-Fang Xu, De-Zhi Kang

Abstract

Parkinson's disease (PD) is the second most common neurodegenerative disorder and is characterized by severe neuronal loss. Necroptosis, or programmed cell necrosis, is mediated by the receptor interacting protein kinase-1 and -3/mixed lineage kinase domain-like protein (RIP1/RIP3/MLKL) pathway, and is involved in several neurodegenerative diseases. Here we aimed to explore the involvement of necroptosis in 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine hydrochloride (MPTP)-induced PD and determine the potential mechanisms. We found that the protein levels of RIP1, RIP3, and MLKL increased significantly in a MPTP-induced mouse PD model. High expression of RIP1/RIP3/MLKL was associated with severe loss of dopaminergic neurons. Pretreatment with necrostatin-1 or the knockout of the RIP3/MLKL gene to block necroptosis pathway dramatically ameliorated PD by increasing dopamine levels and rescuing the loss of dopaminergic neurons, independent of the apoptotic pathway. Moreover, upregulation of inflammatory cytokines in MPTP-treated mice was partially inhibited by deletion of RIP3 or MLKL gene, indicating that a positive feedback loop exists between these genes and inflammatory cytokines. Our data indicate that RIP1/RIP3/MLKL-mediated necroptosis is involved in the pathogenesis of MPTP-induced PD. Downregulating the expression of RIP1, RIP3, or MLKL can significantly attenuate MPTP-induced PD. Future therapy targeting necroptosis may be a promising new option.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。