Significance
Stem cell based-therapies represent a possible solution to repair damaged myocardial tissue by promoting cardioprotection, angiogenesis, and reduced fibrosis. However, recent evidence indicates that most of the positive outcomes are likely due to the release of paracrine factors (cytokines, growth factors, and exosomes) from the cells and not because of the local engraftment of stem cells. This cocktail of essential growth factors and paracrine signals is known as secretome can be isolated in vitro, and the biomolecule composition can be controlled by varying stem-cell culture conditions. Here, we propose a straightforward strategy to deliver secretome produced from hASCs by using a nanocomposite injectable hydrogel made of gelatin and Laponite®. The designed secretome-loaded hydrogel represents a promising alternative to traditional stem cell therapy for the treatment of acute myocardial infarction.
Statement of significance
Stem cell based-therapies represent a possible solution to repair damaged myocardial tissue by promoting cardioprotection, angiogenesis, and reduced fibrosis. However, recent evidence indicates that most of the positive outcomes are likely due to the release of paracrine factors (cytokines, growth factors, and exosomes) from the cells and not because of the local engraftment of stem cells. This cocktail of essential growth factors and paracrine signals is known as secretome can be isolated in vitro, and the biomolecule composition can be controlled by varying stem-cell culture conditions. Here, we propose a straightforward strategy to deliver secretome produced from hASCs by using a nanocomposite injectable hydrogel made of gelatin and Laponite®. The designed secretome-loaded hydrogel represents a promising alternative to traditional stem cell therapy for the treatment of acute myocardial infarction.
