Avian Toll-like receptor 3 isoforms and evaluation of Toll-like receptor 3-mediated immune responses using knockout quail fibroblast cells

禽类 Toll 样受体 3 亚型以及使用敲除鹌鹑成纤维细胞评估 Toll 样受体 3 介导的免疫反应

阅读:10
作者:Mahesh Kc, John M Ngunjiri, Joonbum Lee, Jinsoo Ahn, Mohamed Elaish, Amir Ghorbani, Michael E C Abundo, Kichoon Lee, Chang-Won Lee

Abstract

Toll-like receptor 3 (TLR3) induces host innate immune response on recognition of viral double-stranded RNA (dsRNA). Although several studies of avian TLR3 have been reported, none of these studies used a gene knockout (KO) model to directly assess its role in inducing the immune response and effect on other dsRNA receptors. In this study, we determined the coding sequence of quail TLR3, identified isoforms, and generated TLR3 KO quail fibroblast (QT-35) cells using a CRISPR/Cas9 system optimized for avian species. The TLR3-mediated immune response was studied by stimulating the wild-type (WT) and KO QT-35 cells with synthetic dsRNA or polyinosinic:polycytidylic acid [poly(I:C)] or infecting the cells with different RNA viruses such as influenza A virus, avian reovirus, and vesicular stomatitis virus. The direct poly(I:C) treatment significantly increased IFN-β and IL-8 gene expression along with the cytoplasmic dsRNA receptor, melanoma differentiation-associated gene 5 (MDA5), in WT cells, whereas no changes in all corresponding genes were observed in KO cells. We further confirmed the antiviral effects of poly(I:C)-induced TLR3-mediated immunity by demonstrating significant reduction of virus titer in poly(I:C)-treated WT cells, but not in TLR3 KO cells. On virus infection, varying levels of IFN-β, IL-8, TLR3, and MDA5 gene upregulation were observed depending on the viruses. No major differences in gene expression level were observed between WT and TLR3 KO cells, which suggests a relatively minor role of TLR3 in sensing and exerting immune response against the viruses tested in vitro. Our data show that quail TLR3 is an important endosomal dsRNA receptor responsible for regulation of type I interferon and proinflammatory cytokine, and affect the expression of MDA5, another dsRNA receptor, most likely through cytokine-mediated communication.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。