Myristoylated Alanine-Rich Protein Kinase Substrate (MARCKS) Regulates Small GTPase Rac1 and Cdc42 Activity and Is a Critical Mediator of Vascular Smooth Muscle Cell Migration in Intimal Hyperplasia Formation

肉豆蔻酰化富含丙氨酸的蛋白激酶底物 (MARCKS) 可调节小 GTPase Rac1 和 Cdc42 活性,是内膜增生形成中血管平滑肌细胞迁移的关键介质

阅读:9
作者:Dan Yu, George Makkar, Dudley K Strickland, Thomas A Blanpied, Deborah J Stumpo, Perry J Blackshear, Rajabrata Sarkar, Thomas S Monahan

Background

Transcription of the myristoylated alanine-rich C kinase substrate (MARCKS) is upregulated in animal models of intimal hyperplasia. MARCKS knockdown inhibits vascular smooth muscle cell (VSMC) migration in vitro; however, the mechanism is as yet unknown. We sought to elucidate the mechanism of MARCKS-mediated motility and determine whether MARCKS knockdown reduces intimal hyperplasia formation in vivo.

Conclusions

MARCKS upregulation increases VSMC motility by activation of Rac1 and Cdc42. These effects are mediated by MARCKS sequestering PIP2 at the plasma membrane. This study delineates a novel mechanism for MARCKS-mediated VSMC migration and supports the rational for MARCKS knockdown to prevent intimal hyperplasia.

Results

MARCKS knockdown blocked platelet-derived growth factor (PDGF)-induced translocation of cortactin to the cell cortex, impaired both lamellipodia and filopodia formation, and attenuated motility of human coronary artery smooth muscle cells (CASMCs). Activation of the small GTPases, Rac1 and Cdc42, was prevented by MARCKS knockdown. Phosphorylation of MARCKS resulted in a transient shift of MARCKS from the plasma membrane to the cytosol. MARCKS knockdown significantly decreased membrane-associated phosphatidylinositol 4,5-bisphosphate (PIP2) levels. Cotransfection with an intact, unphosphorylated MARCKS, which has a high binding affinity for PIP2, restored membrane-associated PIP2 levels and was indispensable for activation of Rac1 and Cdc42 and, ultimately, VSMC migration. Overexpression of MARCKS in differentiated VSMCs increased membrane PIP2 abundance, Rac1 and Cdc42 activity, and cell motility. MARCKS protein was upregulated early in the development of intimal hyperplasia in the murine carotid ligation model. Decreased MARKCS expression, but not total knockdown, attenuated intimal hyperplasia formation. Conclusions: MARCKS upregulation increases VSMC motility by activation of Rac1 and Cdc42. These effects are mediated by MARCKS sequestering PIP2 at the plasma membrane. This study delineates a novel mechanism for MARCKS-mediated VSMC migration and supports the rational for MARCKS knockdown to prevent intimal hyperplasia.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。