Macroscopic quorum sensing sustains differentiating embryonic stem cells

宏观群体感应维持胚胎干细胞分化

阅读:15
作者:Hirad Daneshpour, Pim van den Bersselaar, Chun-Hao Chao, Thomas G Fazzio, Hyun Youk

Abstract

Cells can secrete molecules that help each other's replication. In cell cultures, chemical signals might diffuse only within a cell colony or between colonies. A chemical signal's interaction length-how far apart interacting cells are-is often assumed to be some value without rigorous justifications because molecules' invisible paths and complex multicellular geometries pose challenges. Here we present an approach, combining mathematical models and experiments, for determining a chemical signal's interaction length. With murine embryonic stem (ES) cells as a testbed, we found that differentiating ES cells secrete FGF4, among others, to communicate over many millimeters in cell culture dishes and, thereby, form a spatially extended, macroscopic entity that grows only if its centimeter-scale population density is above a threshold value. With this 'macroscopic quorum sensing', an isolated macroscopic, but not isolated microscopic, colony can survive differentiation. Our integrated approach can determine chemical signals' interaction lengths in generic multicellular communities.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。