LncRNA UCA1 attenuates autophagy-dependent cell death through blocking autophagic flux under arsenic stress

LncRNA UCA1 通过阻断砷胁迫下的自噬通量来减轻自噬依赖性细胞死亡

阅读:5
作者:Ming Gao, Changying Li, Ming Xu, Yun Liu, Sijin Liu

Abstract

Arsenic (As) is a naturally toxin which exists ubiquitously in foods and various environment media, incurring diverse toxicities and health problems. Previous studies have shown that oxidative stress, genotoxic damage and pro-apoptotic pathways are ascribed to As-associated detrimental effects. Meanwhile, epigenetic regulations (such as miRNAs and histone modifications) were also reported to contribute to As-induced adverse effects. Nonetheless, whether long non-coding RNAs (LncRNAs) are indispensable for the regulation of As-induced biological outcomes are nearly unknown. In this study, we identified that a lncRNA UCA1 was markedly induced by As treatment in human hepatocytes. Functional assessments revealed that UCA1 played a critical role in protecting hepatocytes from As-induced autophagy inhibition. Furthermore, through RNA-seq assay, oxidative stress induced growth inhibitor 1 (OSGIN1) was uncovered to be the most responsive target downstream of UCA1, and miR-184 acted as an intermediate for the regulation of UCA1 on the level of OSGIN1 through a competing endogenous RNAs (ceRNAs) mechanism. Further mechanistic investigations demonstrated that UCA1/OSGIN1 signaling contributed to As-induced autophagic flux blockage through activating mTOR/p70S6 K cascade, resulting in compromised cell death. Collectively, our study deciphered a lncRNA-dictated molecular mechanism responsible for As toxicity: UCA1 leads a protective role against As-induced cell death through blocking autophagic flux.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。