The Secretome Engages STAT3 to Favor a Cytokine-rich Microenvironment in Mediating Acquired Resistance to FGFR Inhibitors

分泌组与 STAT3 结合,有利于富含细胞因子的微环境,从而介导对 FGFR 抑制剂的获得性耐药性

阅读:5
作者:Xinyi Wang #, Jing Ai #, Hongyan Liu, Xia Peng, Hui Chen, Yi Chen, Yi Su, Aijun Shen, Xun Huang, Jian Ding, Meiyu Geng

Abstract

Acquired resistance severely hinders the application of small-molecule inhibitors. Our understanding of acquired resistance related to FGFRs is limited. Here, to explore the underlying mechanism of acquired resistance in FGFR-aberrant cancer cells, we generated cells resistant to multiple FGFR inhibitors (FGFRi) and investigated the potential mechanisms underlying acquired resistance. We discovered that reprogramming of the secretome is closely associated with acquired resistance to FGFRi. The secretome drives acquired resistance by activating the transcription factor STAT3 via its cognate receptors. Moreover, macrophages and fibroblasts could interact with cancer cells to enhance acquired resistance by promoting exaggerated and dynamic cytokine secretion, as well as STAT3 activation. We also found that Hsp90 and HDAC inhibitors could substantially and simultaneously suppress the proliferation of resistant cells, the secretion of multiple cytokines, and the activation of STAT3. Our study offers translational insights concerning the poor efficacy observed in patients with macrophage- and fibroblast-rich lung cancers and breast tumors after treatment with FGFRi in clinical trials.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。